
An Architecture for Context-Aware Adaptation of Routing
in Delay-Tolerant Networks∗

Agoston Petz1, Angela Hennessy2, Brenton Walker2,
Chien-Liang Fok1, and Christine Julien1

1The University of Texas at Austin, 2The Laboratory for Telecommunications Sciences
{agoston, liangfok, c.julien}@mail.utexas.edu, {brenton, ahennessy}@ltsnet.net

ABSTRACT
We present a general framework for context awareness in de-
lay tolerant networks. The framework introduces an adap-
tation portal through which external context agents can
affect internal routing behavior. The context agent is de-
coupled from the router, enabling different forms of con-
text awareness to be supported. In this paper, we use a
router based on network-coding and identify an example
set of three router configuration parameters that can be
tuned by the external context agent. We implement our
framework within the DTN2 reference implementation and
test it using a prototype Context-Aware Network Coding
(CANC) context agent and our own network coded inter-
nal router agent. Experimental results performed on both
real and channel-emulated testbeds demonstrate our frame-
work’s feasibility and the significant efficiency gains (of up
to 300%) we achieve in using it.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Store and
forward networks

Keywords
Delay-Tolerant Networks, Context-Aware, Bundle Protocol,
Network Coding

1. INTRODUCTION
Delay-tolerant networks (DTNs) are often highly dynamic,

demanding agile and adaptive routing protocols. Existing
techniques for building such protocols often suffer from a
lack of vital context information needed to achieve efficiency.
This information is typically unavailable because it is net-
work or application specific, e.g., relevant context often in-
cludes a node’s role in the application, its future movements,

∗This work was funded in part by the US Dept. of Defense.
The views expressed are those of the authors and may not
necessarily reflect the views of the sponsoring agencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ExtremeCom ’12, March 10-14, 2012, Zürich, Switzerland.
Copyright 2012 ACM 978-1-4503-1264-6/12/03.

and how data is being transmitted. In this paper, we explore
the use of an external context agent to monitor such context
in a dynamic environment and directly improve routing de-
cisions within a DTN.

Efficient and adaptive routing decisions in DTNs require
acquiring and assessing context from a myriad of sources.
For example, to efficiently route data from a base camp to a
remote village, data should only be transmitted to vehicles
traveling towards the village. In this case, context consists
of the data being transmitted, the vehicles present, and their
planned movements. Context-awareness has long been im-
portant in mobile computing environments; in this paper we
investigate its potential impact on DTN routing. Previously,
to our knowledge, this was only done in tailored solutions
that tie a single type of context to a particular DTN routing
protocol (see Section 2). In contrast, we provide a general
approach that decouples context acquisition and processing
from specific routing protocols. This matches the general-
purpose nature of many DTN routers like DTN2 [5], one of
the most popular, which we enhance with our solution.

The novel contributions of this paper are as follows.

• We design and implement an adaptation portal in DTN2
through which context agents can improve router per-
formance.
• We implement a Context-Aware Network-Coded (CANC)

context agent that uses a node’s role and movement
information through which we can reconfigure router
behavior.
• We evaluate our approach through two different net-

work testbeds and demonstrate significant performance
improvements when using our CANC context agent to
control a previously-developed network coding router
for DTN2 [16].
• We identify additional adaptation strategies for con-

text agents that can further benefit DTN routing, with
a specific focus on network coded routing.

2. BACKGROUND AND RELATED WORK
In this section, we discuss how context-awareness has been

used in DTNs. This is followed by a summary of our prior
work on network-coding in DTNs, which we use as the sub-
strate for integrating our general approach to context-aware
DTN routing. Specifically, we build upon our network-coding
router’s implementation within the DTN2 architecture.

2.1 Related Work: Context Awareness
Existing research for DTNs focuses largely on routing mes-

sages in challenging environments [2, 7, 12, 13]. Many of

these protocols are tailored to networks exhibiting specific
types of mobility [12, 19], negating the need to sense mo-
bility as a contextual cue that influences adaptive behavior.
Given the availability of other types of information, rout-
ing performance was tuned, for example, using information
about the history of contacts [3, 4, 10] or by using cross-
layer information [20]. While these approaches use context
in DTN routing, they often make strong assumptions about
the underlying network and the availability of context infor-
mation, and, as a result, exhibit very rigid software archi-
tectures that are dependent on a single type of context. For
example, CAR (Context-aware Adaptive Routing) takes as
input mobility and contact pattern information and uses a
Kalman filter to determine the best forwarding hops [14].
Generic context was used to infer potential mobility or con-
tact patterns, which can be used by a routing protocol to
make forwarding decisions in DTNs [1]. This is similar to
the context we use to demonstrate our architecture.

Our work differs from previous approaches in that we fo-
cus on the architectural questions of providing a general-
purpose framework for integrating context information with
any DTN router module. We demonstrate the feasibility
of our architecture by building a prototype using the DTN2
reference implementation. Our aim for a general-purpose so-
lution is shared by DTN architectures for deep space explo-
ration [15]. Further, we show how context can greatly influ-
ence the performance of network coded routing. This is, to
our knowledge, the first integration of network coded routing
and context-awareness. It is an important step as network
coded routing was shown to be beneficial in DTNs [11, 21,
22].

2.2 Prior Work: Network Coded Routing
Previously we designed and implemented a network cod-

ing router called SimpleNC as an internal router for the
DTN2 reference implementation [16]. SimpleNC splits large
bundles into many non-encoded fragments, each labeled with
a Globally Unique Identifier (GUID) derived from the origi-
nal bundle. Rather than transmitting the non-encoded frag-
ments, the router transmits linear combinations of them,
called encoded fragments. Intermediate nodes can create
new encoded fragments by forming linear combinations of
existing ones (re-encoding). When a node receives enough
encodings, it can reconstruct the original bundle. Optimized
encoding and re-encoding schemes can substantially increase
the amount of innovative content that nodes share.

In this paper, we extend SimpleNC to be a Context-Aware
Network Coding (CANC) Router and focus on using context
to dynamically adjust protocol behavior. This type of dy-
namic protocol reconfiguration is applicable to many types
of routers. Specifically, in the next section, we describe a
general purpose Context Agent (which is independent of the
CANC Router) and a general purpose Adaptation Portal
through which the Context Agent can reconfigure the inter-
nal router. We also implemented a prototype CANC Context
Agent that provides context-aware dynamic reconfiguration
to the CANC Router, and a CANC Adaptation Portal that
connects the context agent to the router. We compare the
performance of the CANC Router to SimpleNC to demon-
strate one particular use of context within DTN routing and
to showcase the potential benefits of context-awareness.

(a) Architecture (b) Implementation

Figure 1: Architecture and Implementation

3. INTEGRATING CONTEXT WITH DTN2
Figure 1 shows the software components in our context-

aware architecture. The novel contributions of this paper
are in the following three components:

• a Context Agent that is external to any bundle protocol
implementation that assimilates and processes context
information and influences routing protocol behavior;
specifically we provide the CANC Context Agent that
collects and processes context information for adapting
a network coded router;
• an Adaptation Portal that exposes configuration hooks

into a Bundle Router,
• a highly configurable Bundle Router that makes an ex-

tensive set of configuration parameters available to the
Context Agent. In our prototype, we extend SimpleNC
to create the CANC Router.

As we describe these components below, we provide both
the general-purpose capabilities and the specific details of
our CANC framework implementation.

3.1 Architectural Rationale
In our general architecture, we deliberately separate the

Context Agent from any DTN-specific architecture. Given a
concrete Adaptation Portal, a Context Agent can work with
many DTN solutions.

DTN2’s External Router API allows a separate process
to receive most of the same events provided to an internal
router and to make bundle (a unit of data in a DTN) for-
warding decisions. In our architecture, the Context Agent
is similar to an External Router. One major difference is an
external router makes forwarding decisions related to indi-
vidual bundles that are sent in a single contact. In contrast,
the Context Agent does not make per-bundle routing deci-
sions. It monitors the node’s context and the router’s status,
and dynamically reconfigures the router to efficiently move
data. Specifically, our architecture assumes that large bun-
dles are transmitted over multiple contacts using encoded
fragments that contain information from a larger applica-
tion bundle. In this setting, the Context Agent’s use of
a request like SendBundle, which is part of the external

router interface, does not make sense. Instead, our Adapta-
tion Portal provides a Context Agent with the configuration
hooks necessary to dynamically reconfigure the non-bundle-
specific send parameters of an internal bundle router.

3.2 CANC Router
We extended SimpleNC into the CANC Router by imple-

menting algorithms to handle numerous configuration pa-
rameters. Both are implemented as internal routers in the
DTN2 reference implementation.

There are several reasons to split routing functionality be-
tween an internal router and the Context Agent. First, we
use an extension block to convey network coding informa-
tion, such as the coefficient vector, which is easily accessed
from an internal router but is not accessible to external
routers. Second, with an internal router we can inject and
send temporary bundles that are stored entirely in RAM.
This allows forwarding nodes to quickly generate and send
new linear encodings in outgoing bundles. Using the exter-
nal router API would result in the payload being written
to files at least two separate times per transmission. It is
thus more effective to keep the network coding functional-
ity in an internal router but provide extensive configuration
hooks that an external process can manipulate. However,
the XML-encoding and event-driven model of the external
router API are elegant, so adding network coding function-
ality to the external router module is attractive future work.

3.3 Adaptation Portal
In general, an Adaptation Portal specifies the interface

between a Context Agent (described below), which acquires
and assimilates context information, and configuration hooks
in the underlying Bundle Router, in the form of assignable
parameters. Different implementations of the Bundle pro-
tocol will provide different mechanisms for this connection.
Within DTN2, the most obvious option is to use the TCL
Command Line Interface. Ultimately, any Adaptation Por-
tal serves as a bridge over which information transits be-
tween the Context Agent and the Bundle Router (sending
routing protocol parameters in one direction and DTN con-
text information in the other direction).

CANC Adaptation Portal. In creating the concrete
CANC Adaptation Portal, we identified three configuration
hooks that are immediately useful for controlling the flow
of encoding bundles when the underlying routing protocol
is the CANC Router: weight, rate, and balance. Each pa-
rameter can be configured for each globally-unique identi-
fier (GUID) and for each neighbor. The CANC Adaptation
Portal tunes these parameters through the DTN2 TCL com-
mand line interface. Figure 2 illustrates the effects of these
parameters.

• Rate. This controls how fast a node sends encodings
to a neighbor relative to how fast the neighbor sends
to it. For a rate r ≥ 1, the node can send r encoding
bundles for the specified GUID for every 1 it receives
in return. For a rate 0 < r < 1, the node can send an
encoding bundle from the specified GUID when it has
received at least 1/r from its neighbor. A rate of zero
ceases sending, and a rate of -1 causes unconstrained
sending.1 In Figure 2, at the top, Node A chooses a
higher rate to send to Node B than vice versa.

1If nodes A and B have rates of rA > 0 and rB > 0 for
a particular GUID, this algorithm is subject to deadlock

• Weight. If a node is carrying encoding bundles as-
sociated with multiple GUIDs, the weight parameter
allows the Context Agent to bias the selection of which
GUID’s bundles to favor. In the SimpleNC router
this selection was uniform, which was inefficient if one
GUID had a much higher rank than another or if one
GUID was much newer than another. Weight param-
eters are taken into account after GUIDs are checked
for eligibility based on rate counters. The weights can
be set using the configuration hooks or automatically
based on relative GUID ranks. The example depicted
in the center of Figure 2 shows a higher weight for
GUID2 because its rank is higher.2

• Balance. If a node has two or more neighbors, the
links share the same limited bandwidth. A router may
want to bias the bandwidth to a particular neighbor;
the balance parameter enables this. The balance pa-
rameter may be approximated by coordinating the rate
parameters.3 In the bottom of Figure 2, Node A biases
the bandwidth to Node B. This may be because Node
B is in an information-starved part of the network.

Figure 2: The configuration
hooks for the CANC Router

SimpleNC is sim-
ilar to flood router
in trying to dis-
seminate all bun-
dles to all neigh-
bors, which is un-
sustainable in most
practical cases. The
static table-based
router is proba-
bly the most com-
monly used DTN2
router, and one
could view these
configuration hooks
as a step towards
making a network
coding-aware static router. CANC Router’s adaptation
hooks let us give directionality to the flow of data in the
network, striking a balance between the approaches.

3.4 The Context Agent
A Context Agent aggregates context relevant to routing—

this could include context explored in previous work like so-
cial contacts, link performance, contact patterns, mobility,
or as in this work, spatial context like direction, speed, and
DTN network data distribution. The Context Agent uses
this to configure the Bundle Router through user-defined
rules. Because context can come from the network stack or
locally through device-specific processes, the Context Agent
can define any number of context collection submodules.
Our implmenetation, shown in Figure 1(b), defines two—one

unless rA · rB ≥ 1. We added a timer so that each node’s
send counter is reset every second, allowing it to send at least
one encoding bundle per second, unless the rate is zero.
2We favor the GUID with higher rank because the sender
has more information about that GUID and is more likely
to be able to complete the receiver’s entire application-level
bundle. Alternative rationales for assigning weights are pos-
sible.
3An available MAC-layer broadcast Convergence Layer
would make this parameter irrelevant.

for collecting router context, and one for collecting mobility
context. A Context Agent also has an interface for control-
ling a DTN Bundle Router (the Router Controller). The
Route Context Aggregator and the Router Controller com-
municate with the Bundle Router through the Adaptation
Portal described above.

Figure 3: Context World
View (with experiment
nodes and waypoints)

As the Context Agent
collects and processes
context, it generates
a “world view” of the
operating environment.
This world view con-
sists of geographically
tagged samples of the
various context items
stored in a dynamically
generated “map” of the
network. This map
(an example is shown
in Figure 3) is split
into cells, and each
cell contains a collec-
tion of context tuples
(i.e., {type:value}) ob-
served at that location
and annotated with a time stamp. Every node periodically
shares its world view by broadcasting it, and when a node
receives another’s view, the two are merged according to a
merge algorithm. This sharing and merging of views allows
a Context Agent to approximate the global context. There
are other possibilities for efficiently sharing context (aside
from näıve periodic beaconing). Work in efficiently sum-
marizing and sharing context is orthogonal to this work; a
Context Agent can incorporate space efficient mechanisms
for context representation, e.g., [8], that would significantly
reduce the overhead of sharing world views.

The CANC Context Agent. In our current concrete
implementation, we focus on context that represents the
node mobility (i.e., their current location, their destination,
and whether they are mobile or static) and the network cod-
ing router state (i.e., for each known GUID, the current rank
of the decoding matrix and the source and destination of the
bundle). With respect to context acquisition and world view
generation, our concrete CANC Context Agent is general and
independent of its use to adapt network coded routing.

Given our use of network coded routing, the routing pro-
cess itself can be considered an information dissemination
problem where the goal is to move data from where there
is high information density towards the sink (which starts
with zero information). With this in mind, the CANC Con-
text Agent uses mobility and router context to set the rate
at which a node will send encodings to a given neighbor.
We implemented two variants of the rules, one that only
considers the relative ranks of two nodes and one that also
considers node mobility, as shown in Figure 4. Although
this relative rate scheme is specific to network coding, in
general, controlling the sending/receiving balance between
a pair of nodes is a baseline control mechanism for many
bundle routing protocols.

4. EXPERIMENTAL EVALUATION
To evaluate our architecture, we integrated our Context

Agent with the DTN2 reference implementation and evalu-

Figure 5: Three Node Robot Experiment

ated it in two real-world system environments: the Pharos
mobile computing testbed [18] and the VMT channel-emulated
testbed [6, 9]. 4

4.1 Pharos Testbed Experiments
The Pharos Testbed consists of autonomous mobile robots

built around a four-wheeled chassis each with a Linux-based
computer and Atheros IEEE 802.11g wireless radios. Mobil-
ity is accomplished through a testbed controller application
that runs locally on each robot and navigates by following
a line on the ground. Although the robots are capable of
autonomous outdoor navigation, we performed our experi-
ments indoors on a floor of the engineering building due to a
long period of inclement weather preventing outdoor tests.
We configured the testbed controller to provide each node’s
location and destination to the CANC Context Agent every
2 seconds using a local socket connection. Thus the testbed
controller itself functions as the Host Context Provider.

Experimental Setup. We performed two experiments with
the autonomous Pharos nodes, one using three nodes (Source,
Mule 1, and Host), and one using five nodes (Source, Mule 1,
Host, Mule 2, and Sink). See Figure 3 for a visual overview
of their placement and mobility paths—the dimensions of
the hallway were 25m by 42m; in all cases, only the mules
moved (with speeds of 0.57 and 0.65 meters/second for Mule
1 and Mule 2 respectively). In the three-node test, we em-
ployed only the Source, Mule 1, and the Host; the Host node
acted as the Sink. In the five-node test, Host was simply
a stationary intermediate node. In both experiments the
source generated a 100MB bundle at the beginning of the
experiment, which it split into 1000 fragments to encode
over. The effective wireless connectivity distance between
nodes was around 10 to 20 meters, less around corners, and
the Source, Host, and Sink were mutually disconnected for
the duration of all the experiments despite their physical
proximity. They could only send data between each other
via the mules. We compared our CANC framework (CANC
Router plus CANC Context Agent) with SimpleNC.

Three-Node Experiment Results. Figure 5 shows the re-
sults of the three-node experiment. The graphs shows the
rank of the decoding matrix at each node vs. time. Although
the SimpleNC mule reached full rank before the CANC mule,

4For complete details, see: http://bit.ly/CANC12

i f $neighbor_rank == $max_rank:
−→$rate = 0; # do not send to any full-rank node
else i f $neighbor_eid == $sink_eid:
−→$rate = MAXRATE; # unbounded rate to sink
else i f $neighbor_rank == 0:
−→$rate = MAXRATE; # neighbor has no encodings
else i f $my_rank == $max_rank:
−→ $rate = MAXRATE # I have full rank
else:
default case, use relative rates

−→$rate = $my_rank/$neighbor_rank

(a) Basic rank-aware rules

i f $neighbor_rank == $max_rank:
−→$rate = 0; # do not send to any full-rank node
else i f $neighbor_eid == $sink_eid:
−→$rate = MAXRATE; # unbounded rate to sink
else i f $neighbor_type == MOBILE AND

$WorldView.destination.rank == $max_rank:
mule’s destination has full rank, don’t send

−→$rate = 0;
else i f $neighbor_rank == 0:
−→$rate = MAXRATE; # neighbor has no encodings
else i f $my_rank == $max_rank:
−→ $rate = MAXRATE # I have full rank
else:
default case, use relative rates

−→$rate = $my_rank/$neighbor_rank

(b) Extended mobility-aware rules

Figure 4: Context Agent Rules

the CANC sink reached full rank more than 1000 seconds
before the SimpleNC sink. This was due to to the CANC
Context Agent’s control of the rates, which kept the mule
from being overwhelmed by encodings from the sink (as hap-
pened in SimpleNC). CANC was able to significantly im-
prove the overhead of network coding by intelligently lim-
iting rates. SimpleNC resulted in a combined total of 5951
encoded fragment transmissions compared to CANC’s 2149,
making CANC almost three times more efficient. CANC
achieved close to the absolute minimum number of trans-
missions needed, which is 2000 (1000 to the mule and 1000
to the sink).

Five-Node Experiment Results. The results from the five
node experiment, graphed in Figure 6, also show that CANC
outperforms SimpleNC. The ranks of the sources and mules
are omitted for clarity. The CANC sink was able to reach
full rank faster than the SimpleNC intermediate. The larger
performance gain over the three-node experiment is due to
the increased congestion at the intermediate, where three
nodes (Mule 1, Host, and Mule 2) were often vying for the
wireless channel simultaneously. Controlling the send rates
in such a situation yielded even greater benefits than when
only two nodes were connected at once, and we believe that
as the number of neighbors grows, the benefits of adaptive
rate control will grow as well. Similarly to the three-node
experiment, CANC also provided massive overhead gains;
it sent 7149 total encodings across all nodes, compared to
SimpleNC’s 16765—resulting in a 2.3 times efficiency gain.

4.2 VMT Testbed Results
We also ran several experiments on the VirtualMeshT-

est (VMT) mobile wireless testbed [6, 9]. VMT allows us
to subject Linux-based real wireless nodes with commodity
wireless hardware to emulated mobile environments. The
wireless testbed is effectively an analog channel emulator
based on an array of programmable attenuators. Given a
desired physical arrangement of nodes, the system computes
the expected path loss between nodes and programs the at-
tenuators to achieve those path loss properties. By updating
the attenuations every second, VMT can emulate a mobile
wireless environment for real wireless nodes.

VMT Experimental Setup. We used the same three-node
and five-node scenarios described in Section 4.1 with some
minor changes. Since the effective range of each node was
approximately 500m, the emulated distances had to be much
greater to achieve disconnections; however the roles and

Figure 6: Five Node Robot Experiment

movements of the nodes remain the same. The stationary
nodes were spaced 1200m apart (ensuring that the Source,
Host, and Sink depicted in Figure 3 were mutually discon-
nect), and the mobile nodes (Mule 1, and Mule 2) moved
between them at a rate of 10m/s. As with the Pharos ex-
periments, the source created a 100MB bundle at the be-
ginning of the scenario that it split into 1000 fragments to
encode over, and as before we compared our CANC frame-
work against SimpleNC.

VMT Results. Several runs of both the three-node and
five-node experiments were averaged and Figure 7 shows the
average time it took for the sink to receive enough encodings
to decode the 100MB bundle (latency) and the average num-
ber of bundles transmitted across all nodes (overhead) in the
network with the standard deviations. As was the case for
the Pharos results, CANC resulted in a lower latency and
much fewer total transmitted bundles than SimpleNC. It is
interesting to note that although the same number of ex-
periments were run for each router, the standard deviations
are much smaller for CANC. This confirms that our CANC
Context Agent’s rate adaptation results in more stable and
predictable behavior.

5. THE POTENTIAL FOR CONTEXT
In this work, we presented a general framework for en-

abling context-awareness in DTNs and demonstrated its use-

(a) Latency (b) Overhead
Figure 7: VMT Experiment Results

fulness. We limited our experiments to specific types of con-
text (location, destination, rank, etc.) and currently only
adapt a network coded routing agent’s behavior in response
to context. This demonstration provides a concrete instan-
tiation of our general approach and showed that significant
performance gains (in terms of bundle delivery latency and
overhead) were possible. There are more expressive types
of context, more powerful adaptation strategies, and many
other DTN routers that could benefit from our architecture.

Path-Aware Geographical Context. Currently we only con-
sider a data mule’s destination to determine the appropriate
rates. We could easily consider the entire intended path.
Considering the whole path would allow the Context Agent
to check the known information diversity in all of the loca-
tions in the path, and adapt its rates, weights, and balance
to maximize the spread of information.

Predictive Context. A node’s world view is currently only
updated with real context samples taken by itself or by other
nodes that with which it exchanges world views. Another
useful extension would be to allow for context “prediction”.
For example, given a data mule (A) traveling a specific path
(P), a node could“assume”a certain spread of bundles to the
cells that P includes, proportional to the amount of time that
A intends to spend passing through those cells. A node’s
world view could therefore be updated with predicted data
even before real samples of context arrived from those cells.

Decaying Trust. Nodes could assign a “trust” or “cer-
tainty” metric to the context samples stored in the world
views according to the timestamp of the context tuples. An
older context sample would naturally be less trustworthy
than a fresh sample, and the decay time could be assigned
based on the relative mobility of the nodes in the network,
which is easily sensed and estimated using, for example, net-
work dynamics estimation [17].

6. REFERENCES
[1] C. Boldrini, M. Conti, F. Delmastro, and

A. Passarella. Context- and social-aware middleware
for opportunistic networks. J. of Network and
Computer Applications, 33(5):525–541, Sept. 2010.

[2] C. Boldrini, M. Conti, I. Iacopini, and A. Passarella.
HiBOp: A history based routing protocol for
opportunisitic networks. In Proc. of WoWMoM, 2007.

[3] B. Burns, O. Brock, and B. N. Levine. MV routing
and capacity building in disruption tolerant networks.
In Proc. of Infocom, pages 398–408, 2005.

[4] P. Costa, C. Mascolo, M. Musolesi, and G. Picco.
Socially-aware routing for publish-subscribe in

delay-tolerant mobile ad hoc networks. IEEE J. on
Sel. Areas in Comm., 26(5):748–760, June 2008.

[5] DTNRG. DTN bundle protocol ref. implm.
http://www.dtnrg.org/wiki/Code.

[6] D. Hahn, G. Lee, B. Walker, M. Beecher, and
P. Mundur. Using virtualization and live migration in
a scalable mobile wireless testbed. SIGMETRICS
Perform. Eval. Rev., 38:21–25, January 2011.

[7] S. Jain, K. Fall, and R. Patra. Routing in a delay
tolerant network. ACM SIGCOMM Computer Comm.
Rev., 34(4):145–158, October 2004.

[8] C. Julien. The context of coordinating groups in
dynamic mobile environments. In Proc. of
Coordination, pages 49–64, June 2011.

[9] Y. Kim, K. Taylor, C. Dunbar, B. Walker, and
P. Mundur. Reality vs emulation: Running real
mobility traces on a mobile wireless testbed. In
HotPlanet 2011 (to appear), 2011.

[10] J. Leguay, T. Friedman, and V. Conan. Evaluating
mobility pattern space routing for DTNs. In Proc. of
Infocom, pages 1–10, 2006.

[11] Y. Lin, B. Li, and B. Liang. Efficient network coded
data transmissions in disruption tolerant networks. In
Proc. of Infocom, pages 1508–1516, 2008.

[12] A. Lindgren, A. Doria, and O. Schelen. Probabilistic
routing in intermittently connected networks. In Proc.
of SAPIR, pages 239–254, 2004.

[13] T. Matsuda and T. Takine. (p,q)-Epidemic routing for
sparsely populated mobile ad hoc networks. IEEE J.
on Sel. Areas in Comm., 26(5):783–793, June 2008.

[14] M. Musolesi and C. Mascolo. CAR: Context-aware
adaptive routing for delay-tolerant mobile networks.
IEEE Trans. on Mobile Computing, 8(2):246–260, Feb.
2009.

[15] C. Peoples, G. Parr, B. Scotney, and A. Moore.
Operational performance of the context-aware broker
(CAB): A communication and management system for
delay-tolerant networks (DTNs). In Proc. of
SPACOMM, pages 128–133, June 2010.

[16] A. Petz, C.-L. Fok, C. Julien, B. Walker, and C. Ardi.
Network coded routing in delay tolerant networks: An
experience report. In Proc. of ExtremeCom, 2011.

[17] A. Petz, T. Jun, N. Roy, C.-L. Fok, and C. Julien.
Passive network-awareness for dynamic
resource-constrained networks. In Proc. of DAIS, 2011.

[18] http://mpc.ece.utexas.edu/pharos.

[19] T. Spyropoulos, K. Psounis, and C. Raghavendra.
Spray and focus: Efficient mobility-assisted routing for
heterogeneous and correlated mobility. In Proc. of
Percom Workshops, pages 79–85, 2007.

[20] Y. Wang and H. Wu. DFT-MSN: The
delay/fault-tolerant mobile sensor network for
pervasive information gathering. In Proc. of Infocom,
pages 1–12, 2006.

[21] J. Widmer and J.-Y. L. Boudec. Network coding for
efficient communication in extreme networks. In Proc.
of WDTN, 2005.

[22] X. Zhang, G. Neglia, J. Kurose, and D. Towsley. On
the benefits of random linear coding for unicast
applications in distruption tolerant networks. In Proc.
of WiOpt, pages 1–7, 2006.

